200 lines
8.2 KiB
Python
200 lines
8.2 KiB
Python
# ------------------------------------------
|
||
import os
|
||
import numpy as np
|
||
import altair as alt
|
||
import pandas as pd
|
||
import streamlit as st
|
||
import datetime
|
||
import time
|
||
import random
|
||
import dashscope
|
||
from dashscope import Generation
|
||
from streamlit_option_menu import option_menu
|
||
from http import HTTPStatus
|
||
from PIL import Image
|
||
|
||
|
||
dashscope.api_key = os.getenv("DASHSCOPE_API_KEY") # get api key from environment variable
|
||
|
||
st.set_page_config(layout="wide", page_title='TestGenius')
|
||
|
||
default_title = 'New Chat'
|
||
default_messages = [('user', 'What capabilities do you offer?'),
|
||
('assistant', 'I excel at transforming uploaded images and texts into precise, multilingual test cases, streamlining the work of Business Analysts with efficiency and accuracy.')
|
||
]
|
||
|
||
conversations = [{
|
||
'id': 1,
|
||
'title': 'Hello',
|
||
'messages': default_messages
|
||
}]
|
||
|
||
|
||
def chat(user, message):
|
||
with st.chat_message(user):
|
||
print(user, ':', message)
|
||
st.markdown(message)
|
||
|
||
|
||
if 'conversations' not in st.session_state:
|
||
st.session_state.conversations = conversations
|
||
conversations = st.session_state.conversations
|
||
|
||
# 当前选择的对话
|
||
if 'index' not in st.session_state:
|
||
st.session_state.index = 0
|
||
|
||
AVAILABLE_MODELS = [
|
||
"qwen-max",
|
||
"qwen-turbo",
|
||
]
|
||
|
||
with st.sidebar:
|
||
st.image('logo.png')
|
||
st.subheader('', divider='rainbow')
|
||
st.write('')
|
||
llm = st.selectbox('Choose your Model', AVAILABLE_MODELS, index=0)
|
||
|
||
# if st.button('New Chat'):
|
||
# conversations.append({'title': default_title, 'messages': []})
|
||
# st.session_state.index = len(conversations) - 1
|
||
|
||
titles = []
|
||
for idx, conversation in enumerate(conversations):
|
||
titles.append(conversation['title'])
|
||
|
||
option = option_menu(
|
||
'Conversations',
|
||
titles,
|
||
default_index=st.session_state.index
|
||
)
|
||
uploaded_file = st.file_uploader("Choose a image file", type="jpg")
|
||
|
||
if st.button("Clear Chat History"):
|
||
st.session_state.messages.clear()
|
||
|
||
if uploaded_file:
|
||
image_uploaded = Image.open(uploaded_file)
|
||
image_path = image_uploaded.filename
|
||
|
||
|
||
def respond(prompt):
|
||
messages = [
|
||
{'role': 'user', 'content': prompt}]
|
||
responses = Generation.call(model="qwen-turbo",
|
||
messages=messages,
|
||
result_format='message', # 设置输出为'message'格式
|
||
stream=True, # 设置输出方式为流式输出
|
||
incremental_output=True # 增量式流式输出
|
||
)
|
||
for response in responses:
|
||
if response.status_code == HTTPStatus.OK:
|
||
yield response.output.choices[0]['message']['content'] + " "
|
||
else:
|
||
yield 'Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
||
response.request_id, response.status_code,
|
||
response.code, response.message
|
||
)
|
||
|
||
|
||
def respond_nonStream(prompt, instruction):
|
||
messages = [
|
||
{'role': 'system', 'content': instruction},
|
||
{'role': 'user', 'content': prompt}]
|
||
response = Generation.call(model="qwen-max",
|
||
messages=messages,
|
||
result_format='message', # 设置输出为'message'格式
|
||
temperature=1,
|
||
top_p=0.8,
|
||
top_k=50)
|
||
if response.status_code == HTTPStatus.OK:
|
||
return response.output.choices[0]['message']['content']
|
||
else:
|
||
return 'Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
||
response.request_id, response.status_code,
|
||
response.code, response.message
|
||
)
|
||
|
||
|
||
def respond_image(prompt, image):
|
||
messages = [
|
||
{'role': 'user',
|
||
"content": [
|
||
{"image": image},
|
||
{"text": prompt}
|
||
]
|
||
}
|
||
]
|
||
response = dashscope.MultiModalConversation.call(model="qwen-vl-max",
|
||
messages=messages,
|
||
result_format='message', # 设置输出为'message'格式
|
||
)
|
||
if response.status_code == HTTPStatus.OK:
|
||
return response.output.choices[0]['message']['content']
|
||
else:
|
||
return 'Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
||
response.request_id, response.status_code,
|
||
response.code, response.message
|
||
)
|
||
|
||
|
||
prompt = st.chat_input("Enter your Questions")
|
||
st.session_state.messages = conversations[st.session_state.index]['messages']
|
||
if prompt:
|
||
if conversations[st.session_state.index]['title'] == default_title:
|
||
conversations[st.session_state.index]['title'] = prompt[:12]
|
||
for user, message in st.session_state.messages:
|
||
chat(user, message)
|
||
chat('user', prompt)
|
||
instruction = """
|
||
# 角色定义
|
||
您是一位多语言测试工程师AI,你能够首先判断用户输入的语言类型并告知用户,然后根据用户提供的产品功能描述,不仅生成详细准确的测试用例,
|
||
而且确保测试用例的编写语言与用户输入内容的语言保持一致。无论用户用何种语言(支持的范围内)描述产品功能,您都能以相同语言输出测试用例。
|
||
|
||
# 任务需求
|
||
- 细致分析用户提交的一个或多个产品功能需求。
|
||
- 根据需求文本或通过解读图片中的描述,生成语言一致的测试用例。
|
||
|
||
# 输入处理
|
||
- 用户输入可为不同语言的文字描述、图片,或二者的结合。
|
||
- 对于多个需求,识别并以输入的语言和顺序生成相应的测试用例。
|
||
|
||
# 格式和规范
|
||
- 测试用例应以Markdown格式的表格显示,包含`用例编号`、`测试步骤`及`预期结果`三栏。
|
||
- 与用户输入的语言保持一致,确保不发生语言混淆。
|
||
- 若需求以图片呈现,须解释图像内容,并以相同语言形式处理文字需求。
|
||
|
||
# 输出规则
|
||
- 针对每项产品功能需求输出一个独立的Markdown表格式测试用例。
|
||
- 若存在多个需求,依据需求的提交顺序生成并编号每个测试用例,保证输出的序列性和准确性。
|
||
- 对无关产品功能的输入,以专业和恰当的语言回复:“作为语言适应型测试工程师AI,我专注于生成测试用例,请您提供具体的产品功能需求,以便我以相应语言回答。”
|
||
|
||
# 示例1
|
||
示例
|
||
user:“当用户点击登录按钮时,如果已正确输入用户名和密码,系统应跳转到首页。”
|
||
assistant:
|
||
您输入了中文的功能描述。
|
||
| 用例编号 | 测试步骤 | 预期结果 |
|
||
| -------- | ------------------------------------------------------ | ---------------- |
|
||
| 1 | 1. 输入正确的用户名和密码 2. 点击登录按钮 | 系统跳转到首页 |
|
||
|
||
# 示例2
|
||
user: Clicking the registration button submits the data.
|
||
assistant:
|
||
You entered requirement in ENGLISH.
|
||
Test cases:
|
||
| Case Number | Test Steps | Expected Results |
|
||
| -------- | ------------------------------------------------------ | ---------------- |
|
||
| 1 | 1. click the registration button | data submitted |
|
||
"""
|
||
if uploaded_file:
|
||
answer = respond_image(prompt, image_path)
|
||
else:
|
||
answer = respond_nonStream(prompt, instruction)
|
||
st.session_state.messages.append(('user', prompt))
|
||
st.session_state.messages.append(('assistant', answer))
|
||
chat('assistant', answer)
|
||
else:
|
||
for user, message in st.session_state.messages:
|
||
chat(user, message)
|