add gradio version

This commit is contained in:
VSP 2024-05-19 16:50:31 +08:00
parent 71387e425f
commit 8856813907

152
testGenius.py Normal file
View File

@ -0,0 +1,152 @@
import random
from http import HTTPStatus
from dashscope import Generation
import dashscope
import gradio as gr
# dashscope.api_key = 'sk-73e9b0452a7e40048495d8ac8ab1afe4' # Vincent's API key
dashscope.api_key = 'sk-83b8ed0ead0849ae9e63a2ae5bdbde0d' # Rayman's API key
def respond(prompt, chat_history, instruction, model, if_stream):
"""
与AI助手进行对话并返回对话历史
参数:
- prompt: 用户输入的文本
- chat_history: 之前的聊天历史列表每个元素是二元组包括用户输入和AI响应
- instruction: 系统指令作为对话的起始信息
返回值:
- 生成器每次产生一个二元组包括空字符串和更新后的聊天历史
"""
# 构建对话消息结构
messages = [{'role': 'system',
'content': instruction},
{'role': 'user',
'content': prompt}
]
full_response = "" # 初始化空字符串以聚合响应
# 调用AI模型生成响应
# -------非流式输出-------
if if_stream == 'Non-Stream':
response = Generation.call(model=model,
messages=messages,
# 设置随机数种子seed如果没有设置则随机数种子默认为1234
seed=1234,
# 将输出设置为"message"格式
result_format='message',
# 设置输出方式为非流式输出
stream=False,
# 设置输出方式为非增量式输出
incremental_output=False)
if not chat_history or chat_history[-1][0] != prompt:
chat_history.append((prompt, ""))
if response.status_code == HTTPStatus.OK:
# 获取响应中的消息内容
message = response.output.choices[0]['message']['content']
# 将消息内容添加到聊天历史中
chat_history.append((prompt, message))
# 返回更新后的聊天历史
return "", chat_history
elif if_stream == 'Stream':
# -------流式输出-------
responses = Generation.call(model=model,
messages=messages,
# 设置随机数种子seed如果没有设置则随机数种子默认为1234
seed=1234,
# 将输出设置为"message"格式
result_format='message',
stream=True, # 设置输出方式为流式输出
incremental_output=True, # 增量式流式输出
temperature=1.8,
top_p=0.9,
top_k=999)
# 确保聊天历史至少有当前会话的开始
if not chat_history or chat_history[-1][0] != prompt:
chat_history.append((prompt, ""))
# 循环处理每个流式响应
for response in responses:
if response.status_code == HTTPStatus.OK:
# 累加每次流式响应的内容
text = response.output.choices[0]['message']['content']
full_response += text
# 更新聊天历史的最后一项
last_turn = list(chat_history[-1])
last_turn[1] = full_response
chat_history[-1] = tuple(last_turn)
yield "", chat_history # 实时输出当前的聊天历史
else:
# 如果出错,构建错误信息并更新最后一项
full_response = 'Request id: {}, Status code: {}, error code: {}, error message: {}'.format(
response.request_id, response.status_code,
response.code, response.message
)
last_turn = list(chat_history[-1])
last_turn[1] = full_response
chat_history[-1] = tuple(last_turn)
yield "", chat_history
break # 出现错误时终止循环
def respond_nonStream(prompt, chat_history, instruction, model):
# 构建对话消息结构
messages = [{'role': 'system',
'content': instruction},
{'role': 'user',
'content': prompt}
]
full_response = "" # 初始化空字符串以聚合响应
# 调用AI模型生成响应
responses = Generation.call(model=model,
messages=messages,
# 设置随机数种子seed如果没有设置则随机数种子默认为1234
seed=1234,
# 将输出设置为"message"格式
result_format='message',
stream=True, # 设置输出方式为流式输出
incremental_output=True, # 增量式流式输出
temperature=1.8,
top_p=0.9,
top_k=999)
llm_model_list = ['qwen-turbo','qwen-plus', 'qwen-max']
init_llm = llm_model_list[0]
# 创建 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown(
"""
# AI TestGenius
A simple LLM app for generating test cases from function design.
""")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Prompt")
with gr.Accordion(label="Advanced options", open=False):
system = gr.Textbox(label="System prompts", lines=2,
value="A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.")
llm = gr.Dropdown(
llm_model_list,
label='Choose LLM Model',
value=init_llm,
interactive=True
)
if_stream = gr.Dropdown(
["Stream", "Non-Stream"],
label='Choose Streaming',
value="Stream",
interactive=True
)
btn = gr.Button("Submit")
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
btn.click(respond, inputs=[msg, chatbot, system, llm, if_stream], outputs=[msg, chatbot]) # click to submit
msg.submit(respond, inputs=[msg, chatbot, system, llm, if_stream], outputs=[msg, chatbot]) # Press enter to submit
# 运行界面
if __name__ == "__main__":
gr.close_all()
demo.launch()