modified code, add another file for gradio non-stream

This commit is contained in:
VSP 2024-05-19 19:18:44 +08:00
parent 8856813907
commit 36529085b3
2 changed files with 133 additions and 52 deletions

View File

@ -8,48 +8,54 @@ import gradio as gr
dashscope.api_key = 'sk-83b8ed0ead0849ae9e63a2ae5bdbde0d' # Rayman's API key
def respond(prompt, chat_history, instruction, model, if_stream):
"""
与AI助手进行对话并返回对话历史
参数:
- prompt: 用户输入的文本
- chat_history: 之前的聊天历史列表每个元素是二元组包括用户输入和AI响应
- instruction: 系统指令作为对话的起始信息
返回值:
- 生成器每次产生一个二元组包括空字符串和更新后的聊天历史
"""
def respond_nonStream(prompt, chat_history, instruction, model):
# 构建对话消息结构
messages = [{'role': 'system',
'content': instruction},
{'role': 'user',
'content': prompt}
]
full_response = "" # 初始化空字符串以聚合响应
messages = [{'role': 'system', 'content': instruction},
{'role': 'user', 'content': prompt}]
print(f"Messages: {messages}")
# 初始化空字符串以聚合响应
full_response = ""
# 调用AI模型生成响应
# -------非流式输出-------
if if_stream == 'Non-Stream':
try:
response = Generation.call(model=model,
messages=messages,
# 设置随机数种子seed如果没有设置则随机数种子默认为1234
seed=1234,
# 将输出设置为"message"格式
result_format='message',
# 设置输出方式为非流式输出
stream=False,
# 设置输出方式为非增量式输出
incremental_output=False)
print(f"Response: {response}")
if not chat_history or chat_history[-1][0] != prompt:
chat_history.append((prompt, ""))
chat_history.append([prompt, ""])
print(f"old chat history: {chat_history}")
if response.status_code == HTTPStatus.OK:
# 获取响应中的消息内容
message = response.output.choices[0]['message']['content']
# 将消息内容添加到聊天历史中
chat_history.append((prompt, message))
# 返回更新后的聊天历史
print(f"Generated message: {message}")
# 更新聊天历史记录中的最后一条记录
chat_history[-1] = [prompt, message]
print(f"Updated chat_history: {chat_history}")
return "", chat_history
elif if_stream == 'Stream':
else:
print(f"Error: Received response status {response.status_code}")
return "Error: Could not generate response", chat_history
except Exception as e:
print(f"Exception occurred: {e}")
return f"Exception occurred: {e}", chat_history
def respond(prompt, chat_history, instruction, model, if_stream='Stream'):
if if_stream == 'Stream':
messages = [{'role': 'system',
'content': instruction},
{'role': 'user',
'content': prompt}
]
full_response = "" # 初始化空字符串以聚合响应
# -------流式输出-------
responses = Generation.call(model=model,
messages=messages,
@ -88,31 +94,45 @@ def respond(prompt, chat_history, instruction, model, if_stream):
yield "", chat_history
break # 出现错误时终止循环
elif if_stream == 'Non-Stream':
# 构建对话消息结构
messages = [{'role': 'system', 'content': instruction},
{'role': 'user', 'content': prompt}]
print(f"Messages: {messages}")
def respond_nonStream(prompt, chat_history, instruction, model):
# 构建对话消息结构
messages = [{'role': 'system',
'content': instruction},
{'role': 'user',
'content': prompt}
]
full_response = "" # 初始化空字符串以聚合响应
# 调用AI模型生成响应
responses = Generation.call(model=model,
messages=messages,
# 设置随机数种子seed如果没有设置则随机数种子默认为1234
seed=1234,
# 将输出设置为"message"格式
result_format='message',
stream=True, # 设置输出方式为流式输出
incremental_output=True, # 增量式流式输出
temperature=1.8,
top_p=0.9,
top_k=999)
# 调用AI模型生成响应
try:
response = Generation.call(model=model,
messages=messages,
seed=1234,
result_format='message',
stream=False,
incremental_output=False)
print(f"Response: {response}")
if not chat_history or chat_history[-1][0] != prompt:
chat_history.append([prompt, ""])
print(f"old chat history: {chat_history}")
if response.status_code == HTTPStatus.OK:
# 获取响应中的消息内容
message = response.output.choices[0]['message']['content']
print(f"Generated message: {message}")
# 更新聊天历史记录中的最后一条记录
chat_history[-1] = [prompt, message]
print(f"Updated chat_history: {chat_history}")
return "", chat_history
else:
print(f"Error: Received response status {response.status_code}")
return "Error: Could not generate response", chat_history
except Exception as e:
print(f"Exception occurred: {e}")
return f"Exception occurred: {e}", chat_history
llm_model_list = ['qwen-turbo','qwen-plus', 'qwen-max']
llm_model_list = ['qwen-turbo', 'qwen-plus', 'qwen-max']
init_llm = llm_model_list[0]
# 创建 Gradio 界面
@ -122,17 +142,20 @@ with gr.Blocks() as demo:
# AI TestGenius
A simple LLM app for generating test cases from function design.
""")
chatbot = gr.Chatbot()
history = [["Hello", "Hello, how can I help you?"]]
chatbot = gr.Chatbot(history)
msg = gr.Textbox(label="Prompt")
with gr.Accordion(label="Advanced options", open=False):
system = gr.Textbox(label="System prompts", lines=2,
value="A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.")
# 选择模型
llm = gr.Dropdown(
llm_model_list,
label='Choose LLM Model',
value=init_llm,
interactive=True
)
# 选择是否流式输出
if_stream = gr.Dropdown(
["Stream", "Non-Stream"],
label='Choose Streaming',
@ -145,7 +168,6 @@ with gr.Blocks() as demo:
btn.click(respond, inputs=[msg, chatbot, system, llm, if_stream], outputs=[msg, chatbot]) # click to submit
msg.submit(respond, inputs=[msg, chatbot, system, llm, if_stream], outputs=[msg, chatbot]) # Press enter to submit
# 运行界面
if __name__ == "__main__":
gr.close_all()

59
testGradio.py Normal file
View File

@ -0,0 +1,59 @@
import gradio as gr
import random
import time
from http import HTTPStatus
import dashscope
from dashscope import Generation
dashscope.api_key = 'sk-83b8ed0ead0849ae9e63a2ae5bdbde0d' # Rayman's API key
with gr.Blocks() as demo:
history = [["Hello","Hello, how can I help you?"]]
chatbot = gr.Chatbot(history)
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def respond_nonStream(prompt, chat_history):
# 构建对话消息结构
messages = [{'role': 'system', 'content': "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."},
{'role': 'user', 'content': prompt}]
print(f"Messages: {messages}")
# 初始化空字符串以聚合响应
full_response = ""
# 调用AI模型生成响应
try:
response = Generation.call(model='qwen-turbo',
messages=messages,
seed=1234,
result_format='message',
stream=False,
incremental_output=False)
print(f"Response: {response}")
if not chat_history or chat_history[-1][0] != prompt:
chat_history.append([prompt, ""])
print(f"old chat history: {chat_history}")
if response.status_code == HTTPStatus.OK:
# 获取响应中的消息内容
message = response.output.choices[0]['message']['content']
print(f"Generated message: {message}")
# 更新聊天历史记录中的最后一条记录
chat_history[-1] = [prompt, message]
print(f"Updated chat_history: {chat_history}")
return "", chat_history
else:
print(f"Error: Received response status {response.status_code}")
return "Error: Could not generate response", chat_history
except Exception as e:
print(f"Exception occurred: {e}")
return f"Exception occurred: {e}", chat_history
msg.submit(respond_nonStream, inputs=[msg, chatbot], outputs=[msg, chatbot])
if __name__ == "__main__":
demo.launch()