2024-05-07 17:27:11 +08:00
|
|
|
|
# ------------------------------------------
|
|
|
|
|
import os
|
2023-11-03 03:32:17 +08:00
|
|
|
|
import numpy as np
|
2024-05-07 17:27:11 +08:00
|
|
|
|
import altair as alt
|
2020-11-03 14:29:22 +08:00
|
|
|
|
import pandas as pd
|
|
|
|
|
import streamlit as st
|
2024-05-07 17:27:11 +08:00
|
|
|
|
import datetime
|
|
|
|
|
import time
|
|
|
|
|
import random
|
|
|
|
|
import dashscope
|
|
|
|
|
from dashscope import Generation
|
|
|
|
|
from streamlit_option_menu import option_menu
|
|
|
|
|
from http import HTTPStatus
|
2024-05-07 20:34:44 +08:00
|
|
|
|
from PIL import Image
|
|
|
|
|
|
2024-05-07 17:27:11 +08:00
|
|
|
|
|
|
|
|
|
dashscope.api_key = os.getenv("DASHSCOPE_API_KEY") # get api key from environment variable
|
|
|
|
|
|
|
|
|
|
st.set_page_config(layout="wide", page_title='TestGenius')
|
|
|
|
|
|
2024-05-07 20:34:44 +08:00
|
|
|
|
default_title = 'New Chat'
|
2024-05-07 17:27:11 +08:00
|
|
|
|
default_messages = [('user', 'Hello'),
|
|
|
|
|
('assistant', 'Hello, how can I help you?')
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
conversations = [{
|
|
|
|
|
'id': 1,
|
|
|
|
|
'title': 'Hello',
|
|
|
|
|
'messages': default_messages
|
|
|
|
|
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def chat(user, message):
|
|
|
|
|
with st.chat_message(user):
|
|
|
|
|
print(user, ':', message)
|
|
|
|
|
st.markdown(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'conversations' not in st.session_state:
|
|
|
|
|
st.session_state.conversations = conversations
|
|
|
|
|
conversations = st.session_state.conversations
|
|
|
|
|
|
|
|
|
|
# 当前选择的对话
|
|
|
|
|
if 'index' not in st.session_state:
|
|
|
|
|
st.session_state.index = 0
|
|
|
|
|
|
|
|
|
|
AVAILABLE_MODELS = [
|
|
|
|
|
"qwen-max",
|
|
|
|
|
"qwen-turbo",
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
with st.sidebar:
|
2024-05-07 20:34:44 +08:00
|
|
|
|
st.image('logo.png')
|
2024-05-07 17:27:11 +08:00
|
|
|
|
st.subheader('', divider='rainbow')
|
|
|
|
|
st.write('')
|
2024-05-07 20:34:44 +08:00
|
|
|
|
llm = st.selectbox('Choose your Model', AVAILABLE_MODELS, index=0)
|
2024-05-07 17:27:11 +08:00
|
|
|
|
|
|
|
|
|
# if st.button('New Chat'):
|
|
|
|
|
# conversations.append({'title': default_title, 'messages': []})
|
|
|
|
|
# st.session_state.index = len(conversations) - 1
|
|
|
|
|
|
|
|
|
|
titles = []
|
|
|
|
|
for idx, conversation in enumerate(conversations):
|
|
|
|
|
titles.append(conversation['title'])
|
|
|
|
|
|
|
|
|
|
option = option_menu(
|
|
|
|
|
'Conversations',
|
|
|
|
|
titles,
|
|
|
|
|
default_index=st.session_state.index
|
|
|
|
|
)
|
2024-05-07 20:34:44 +08:00
|
|
|
|
uploaded_file = st.file_uploader("Choose a image file", type="jpg")
|
|
|
|
|
|
|
|
|
|
if st.button("Clear Chat History"):
|
|
|
|
|
st.session_state.messages.clear()
|
|
|
|
|
|
|
|
|
|
if uploaded_file:
|
|
|
|
|
image_uploaded = Image.open(uploaded_file)
|
|
|
|
|
image_path = image_uploaded.filename
|
2024-05-07 17:27:11 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def respond(prompt):
|
|
|
|
|
messages = [
|
|
|
|
|
{'role': 'user', 'content': prompt}]
|
2024-05-07 20:34:44 +08:00
|
|
|
|
responses = Generation.call(model="qwen-turbo",
|
2024-05-07 17:27:11 +08:00
|
|
|
|
messages=messages,
|
|
|
|
|
result_format='message', # 设置输出为'message'格式
|
|
|
|
|
stream=True, # 设置输出方式为流式输出
|
|
|
|
|
incremental_output=True # 增量式流式输出
|
|
|
|
|
)
|
|
|
|
|
for response in responses:
|
|
|
|
|
if response.status_code == HTTPStatus.OK:
|
|
|
|
|
yield response.output.choices[0]['message']['content'] + " "
|
|
|
|
|
else:
|
|
|
|
|
yield 'Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
|
|
|
|
response.request_id, response.status_code,
|
|
|
|
|
response.code, response.message
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def respond_nonStream(prompt, instruction):
|
2024-05-07 20:34:44 +08:00
|
|
|
|
messages = [
|
|
|
|
|
{'role': 'system', 'content': instruction},
|
|
|
|
|
{'role': 'user', 'content': prompt}]
|
|
|
|
|
response = Generation.call(model="qwen-turbo",
|
2024-05-07 17:27:11 +08:00
|
|
|
|
messages=messages,
|
|
|
|
|
result_format='message', # 设置输出为'message'格式
|
|
|
|
|
)
|
|
|
|
|
if response.status_code == HTTPStatus.OK:
|
|
|
|
|
return response.output.choices[0]['message']['content']
|
|
|
|
|
else:
|
|
|
|
|
return 'Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
|
|
|
|
response.request_id, response.status_code,
|
|
|
|
|
response.code, response.message
|
|
|
|
|
)
|
|
|
|
|
|
2020-11-03 14:29:22 +08:00
|
|
|
|
|
2024-05-07 20:34:44 +08:00
|
|
|
|
def respond_image(prompt, image):
|
|
|
|
|
messages = [
|
|
|
|
|
{'role': 'user',
|
|
|
|
|
"content": [
|
|
|
|
|
{"image": image},
|
|
|
|
|
{"text": prompt}
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
response = dashscope.MultiModalConversation.call(model="qwen-vl-max",
|
|
|
|
|
messages=messages,
|
|
|
|
|
result_format='message', # 设置输出为'message'格式
|
|
|
|
|
)
|
|
|
|
|
if response.status_code == HTTPStatus.OK:
|
|
|
|
|
return response.output.choices[0]['message']['content']
|
|
|
|
|
else:
|
|
|
|
|
return 'Request id: %s, Status code: %s, error code: %s, error message: %s' % (
|
|
|
|
|
response.request_id, response.status_code,
|
|
|
|
|
response.code, response.message
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt = st.chat_input("Enter your Questions")
|
2024-05-07 17:27:11 +08:00
|
|
|
|
st.session_state.messages = conversations[st.session_state.index]['messages']
|
|
|
|
|
if prompt:
|
|
|
|
|
if conversations[st.session_state.index]['title'] == default_title:
|
|
|
|
|
conversations[st.session_state.index]['title'] = prompt[:12]
|
|
|
|
|
for user, message in st.session_state.messages:
|
|
|
|
|
chat(user, message)
|
|
|
|
|
chat('user', prompt)
|
2024-05-07 20:34:44 +08:00
|
|
|
|
instruction = """# 角色定义
|
|
|
|
|
您是一位高级测试工程师AI,专注于从用户提供的产品功能描述中生成详细准确的测试用例。您可以处理包含文字描述和/或图片说明的需求。
|
|
|
|
|
|
|
|
|
|
# 任务需求
|
|
|
|
|
- 深入分析用户提交的一个或多个产品功能需求。
|
|
|
|
|
- 根据需求,按需求顺序生成测试用例。
|
|
|
|
|
|
|
|
|
|
# 输入处理
|
|
|
|
|
- 用户输入可以是文字描述、图片,或两者的结合。
|
|
|
|
|
- 当面对多个需求时,您应能够识别并按照需求的序号或提出顺序生成对应的测试用例。
|
|
|
|
|
|
|
|
|
|
# 格式和规范
|
|
|
|
|
- 每个测试用例应按照Markdown格式的表格展示。
|
|
|
|
|
- 表格应包括三个字段:`用例编号`、`测试步骤`、`预期结果`。
|
|
|
|
|
- 确保测试用例的编撰语言与用户的产品功能描述语言一致。
|
|
|
|
|
- 对于图像中的需求,应先解读图像内容,然后按照文字需求处理。
|
|
|
|
|
|
|
|
|
|
# 输出规则
|
|
|
|
|
- 对于每个需求,生成的测试用例应该包括一个独立的Markdown表格。
|
|
|
|
|
- 如果用户提交了多个需求,应按照需求的提出顺序分别生成并编号每个测试用例,确保输出的顺序性和准确性。
|
|
|
|
|
- 若用户输入与产品功能无关,以专业态度回应:“作为测试工程师AI,我主要生成测试用例。请提供具体的产品功能需求。
|
|
|
|
|
"""
|
|
|
|
|
if uploaded_file:
|
|
|
|
|
answer = respond_image(prompt, image_path)
|
|
|
|
|
else:
|
|
|
|
|
answer = respond_nonStream(prompt, instruction)
|
2024-05-07 17:27:11 +08:00
|
|
|
|
st.session_state.messages.append(('user', prompt))
|
|
|
|
|
st.session_state.messages.append(('assistant', answer))
|
|
|
|
|
chat('assistant', answer)
|
|
|
|
|
else:
|
|
|
|
|
for user, message in st.session_state.messages:
|
|
|
|
|
chat(user, message)
|