streamlit-testGenius/testAny.py

92 lines
2.9 KiB
Python
Raw Permalink Normal View History

2024-05-30 17:11:59 +08:00
"""
this script can identify xml tags competency within a column of selected Dataframe.
It will collect the complete and incomplete tags into 2 separate columns.
"""
import pandas as pd
from lxml import etree
import re
data = {
'Response': [
'<tag1>content1</tag1> some text here',
'<tag2>content2<tag3>content3</tag3></tag2> more text',
"<tag4 content=\"attribute\">content4</tag4> additional text",
'<tag5>incomplete</tag5> extra text',
'</tag6> miscellaneous text',
# ... 其他数据
]
}
# df = pd.DataFrame(data)
# 正则表达式匹配完整的XML标签
complete_tag_pattern = re.compile(r'<(\w+)[^>]*>.*?</\1>')
# 正则表达式匹配不完整的XML标签
incomplete_tag_pattern = re.compile(r'<(\w+)[^>]*>.*?$')
# 正则表达式匹配所有开放标签和闭合标签
open_tag_pattern = re.compile(r'<(\w+)[^>]*>')
close_tag_pattern = re.compile(r'</(\w+)>')
# 函数:使用正则表达式提取标签,并分类完整和不完整的标签
def classify_tags(xml_string):
# 找到所有开放标签和闭合标签
open_tags = set(open_tag_pattern.findall(xml_string))
close_tags = set(close_tag_pattern.findall(xml_string))
# 确定不完整的标签:只有开放标签或只有闭合标签的
incomplete_tags = list(open_tags - close_tags) + list(close_tags - open_tags)
# 确定完整的标签:既有开放标签又有闭合标签的
complete_tags = [f"<{tag}></{tag}>" for tag in open_tags.intersection(close_tags)]
# 将标签列表转换为字符串
complete_tags_str = ', '.join(complete_tags) if complete_tags else ''
incomplete_tags_str = ', '.join(
[f"<{tag}>" if tag in open_tags else f"</{tag}>" for tag in incomplete_tags]) if incomplete_tags else ''
return complete_tags_str, incomplete_tags_str
2024-06-04 00:03:28 +08:00
def check_df_tags(df=pd.DataFrame(data)):
2024-05-30 17:11:59 +08:00
# 应用函数到DataFrame
df['CompleteTags'], df['IncompleteTags'] = zip(*df['Response'].apply(classify_tags))
return df
# 正则表达式匹配非XML标签的英文字符
non_tag_english_chars_pattern = re.compile(r'>[^<>]*<|<[^<>]*>')
# 函数提取非XML标签的英文字符
def extract_english_chars(response):
# 移除XML标签
non_tags_content = re.sub(non_tag_english_chars_pattern, '', response)
# 提取英文字符
english_chars = re.findall(r'[A-Za-z]+', non_tags_content)
# 将提取的英文字符转换为字符串
english_chars_str = ' '.join(english_chars) if english_chars else ''
return english_chars_str
2024-06-04 00:03:28 +08:00
def check_df_english(df=pd.DataFrame(data)):
2024-05-30 17:11:59 +08:00
# 应用函数到DataFrame
df['EnglishChars'] = df['Response'].apply(extract_english_chars)
return df
if __name__ == '__main__':
2024-06-07 18:55:50 +08:00
df = pd.read_excel('prompt_multiple_template0603_2_4steps_100tests.xlsx')
2024-05-30 17:11:59 +08:00
checked_df = check_df_tags(df)
checked_df = check_df_english(checked_df)
# 保存结果到Excel文件
checked_df.to_excel('output.xlsx', index=False)